Mains Power Feed Complete

Mains Power

This is the last mains power update for the ReactorForge Induction Heater. It will be the last because it’s complete! Here is how the last couple days of that process went.

Mains Power

I started by connecting the jumpers from the custom splice connector to the 60 Amp 240-volt dual pole breaker and ground bus. The photo shows green hooked to the neutral bus. I later moved this as I did not need to tap 120-volt like I thought I would have to since the ATX power supply runs on 240-volt now. (I just forgot, it’s been a while.)

Mains Power

And here is the 240-volt quick disconnect assembly installed and ready. I will print another version of the slide lock. The slides should be solid so the splice connectors are not accessible while the wires are disconnected.

Mains Power

Next, I prepared the 2 AWG mains power feeder lines. These will connect the splice block directly to the input of the ReactorForge.

Mains PowerMains Power

The splice block side has thick metal tabs that are double layered with heat-shrink tubing. These provide a high current, high durability connection to the screw terminal that will stand up to multiple connect/disconnect cycles.

Mains Power

The Induction Heater side has heavy duty lugs that will accept the terminal post. These are also insulated with double layers heat-shrink.

Mains Power

Bringing It All Together

And here you can see the feeder lines connected to the input of terminal posts on the back of the ReactorForge. I also ran a USB extension with a small hub for connecting the Atmel ISP programmer. I put the Bluetooth dongle here as well. It communicates with the mainboard to send/receive commands and system telemetry.

Mains PowerMains Power

I then installed a variac between the mains contactor and the inverter input filter.

Mains Power Variac

When software activates the contactor, 240 volts directly feeds the inverter typically. Since I have a decent amount of testing to do, I severed that connection and installed the variac to allow lower power testing.

Mains Power

I taped up the small areas where 240 volts was accessible in the front to avoid accidental contact or tools shorting things out. Getting my fingers across 240-volt mains power is not something I want to experience twice!

Mains Power VariacMains Power

On To The CODE!

That’s it for cooling and mains power connections. The next step is to get the programming environment set back up. I will turn things up as is and do some testing to make sure everything is still good. Once that is done I will get right to the next big task, I’ve decided to port the entire thing to Arduino. This won’t be too difficult since the code is already in C and I will be glad to get away from AVR Studio, to be honest. I made the choice to move to Arduino due to is massive use and rise in popularity over the last few years. Since this is an open source project I want to use a platform that people are familiar with. Let’s put industrial level induction heaters right up there with open source 3D printer firmware!

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.